Application of perturbation techniques in the analysis
of braced frames
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ABSTRACT

The efficiency of applying the incremental perturbation method to combined nonlinear
Jlems was particularly reported by Yokoo, Nakamura and Uetani. (1976) And this suc-
ended by Ishida and Morisako (1987) to one dimensional finite

Tl v

U
essful approach has been ex

For the sake of studying a macro behaviour of steel frames, this paper deals with the
formulation of an ordered set of perturbation equation for a combined nonlinear constitutive
squation using strain hardening general yield hinge model to lead to more efficiency on the
capacity of computers, a higher speed of calculation and simpler procedures in modeling.

Some examples of braced frames are analysed by the present method, and good corre-
spondence between the results of test and those of analysis on post buckling load - displace-
ment relationship is successfully achieved.

INTRODUCTION

¥Yhile material and geometrical nonlinear analysis for steel skeleton structures has
been done by several investigators, using a series of linear approximations within small
increments, the efficiency of applying the incremental perturbation method to combined non-
linear problems was particularly reported by Yokoo, Nakamura and Uetani.(1976) This suc-
cf:s,aful approach has been extended by Ishida and Morisako (1987) to one dimensional finite
element method.

However, strain hardening general yield hinge method (Inoue and Ogawa 1978) proves
to be more useful than one dimensional finite element method in studying a macro behav-
wour of frames in terms of the capacity of computers, the speed of calculation and the simple
procedures in modeling.

Thus this paper deals with the formulation of an ordered set of perturbation equation for
a combined nonlinear constitutive equation using strain hardening general yield hinge
model, and some examples of analysis are shown.
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Where superscript e denotes

the elastic ¢
f - " . 0 . - -
by the following equations mponent of the deformation.
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It is noted that Eq.7a expresses the equilibrium condition at t = 0. Matrix expression of Eqgs.7
provides the following ordered set of perturbation equation about the elastic constitutive equa-

ti1on,
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Plastic Constitutive Eguation

Now we consider the case when yield hinges form at sither end of the member. Let the

member-end deformation, zd ={ U, - 8, }T and member-end force be divided into com-
ponents at each end, a and b. And we define as follows;
. il iy e (11a) , (11b)
Sl o ¥ pe)={ N oMb y (12a) , (12b)
where A
(13)

i Hat albb 7 N -dp /d!

According to Prager (1955), if the yield
surface is drawn with the aXxes of the
stresses divided by yield stresses and those
of plastic strains multiplied by yield
stresses, the subsequent yield surface will e

move parallel in the direction of plastic

——”—hfifwf/df
N'daldt

e ——

strain without changing its shape and aéate T F : MM,
as Fig.2. Yield surfaces are defined at both
¢ and b ends of the member, and following : /

equation is provided when yielding occurs B e
at both ends. S

F (pep)y— Cap =0 (14) Figure 2
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When the yield hinge formation is different from that in
the above case, {f!(f /dt may be provided by adequate

|
. ) - :
squeezing of ¢ and d (/dt . | /
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product of the elastic stiffness matrix K°, the deformation ——-_ ‘/
vnlmrit.y d! d/dt and strain ha r'dr-.riir!;_{ coefficient 1. x_ﬁl
d 22 = 7K 418 (97} -
dl di \
Although da /dt is generally unequal to da/dt except in the \
case of uniaxial loading, let da/dt approximate to the nor-
mal component of da, /dt (normal to the yield surface). In Figure 3

this case, the yield condition that the stress point remains
»n the subsequent yield surface may be written as follows. (refer to Fig.3)

@T (5{.“?- ‘f{_‘f{ﬂJ = () (24)
d i d i

Taylor expansion of kq.22 provides the following ordered set of equation;
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By substituting Eq.31 for Eq.28, we can obtain the ordered set of the con
under loading as follows;

stitutive equation
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P’?;-lrilt“ﬂm_ yield functions are assumed for all members,

(ﬂjl'df".“l"ﬂ{'l o of pﬂ{rt?”[““m” equations up to the third order are considered in the present
m]m_\;ﬁrm."]'_hi: length :‘rf‘ mvrv.nwnt for step-by-step analysis 18 determined so th:-xf L-hf.‘ T;r.f_:l.ur
ance limit (Yokoo, 1976) be 0.01 for the horizontal and vertical displacements at the joints
among t_.h{j::ﬂh}mn, the beam and the bracing members, and at the mid-point of hruciné
members. \'lt"_]'ii‘”ﬂ “”fl unloading of the member and the stress point reaching to the :‘ainmi-
lar point during loading also determine the length of increment. " '

General Ht,iﬂjﬂl":{.ﬁ E_.‘qu.altiﬂl‘i 1s solved by controlling the displacement largest in the pre-
vious increment. The direction of controlled displacement is determined so that the yield
hinge occurring at the last do not unload. The resulting post buckling behaviour that both
load and displacement decrease is successfully achieved and expressed in the analysis.

The results of test and present analysis on the relationship between load and the aver-
age relative story rotation are shown in Fig.5. Although the analytical result, compared with
the test result, has sharp peaks around the buckling points owing to the hinge method, the
relative story rotation and the load level when buckling occurs correspond well with the test
result. (a) - (g) in Fig.5 shows the occurrence of buckling. Each buckling member corre-
sponds to the bracing member denoted by (a) - (g) in Fig.4. All buckled members in the
analysis correspond with those buckled in the test for the frame K. But, for the frame VK,
bracing member (g) has buckled at the first minus-loading in the analysis, while the brac-
ing member (f) has buckled in the test. It is considered that because the stress levels of both
(f) and (g) members are nearly equal, the slightest effect on the stress level caused by some
deviations from the test specimens and the mathematical models can easily change the col-
lapse mechanism. In fact, the stress level of the member (f), when the member (g) was buck-

led in the analysis, was (N/Np)* + (M/Mp) = 0.987, where 1.0 is the yielding stress level. Al-

collapse mechanisms are different, the analytical result corresponds well with the

though the | |
ationship afterwards in this ex-

test result on the the load - average relative story rotation rel

ample. -
The load - average relative story rotation relationship for the frame K, analysed under

the condition that the initial deflection e is equal to zero, is shown in Fig.6. The initial

buckling load rises about 13% more compared to the case of e = /500. T*he bracing members

(¢) and (d) have not buckled. The reason for the member (c) is that the right er}d‘ (?f' the mem-

ber (c) vielded at the point of sign & 1n the figure because of the rising of the mitlal'bucklmg

load and it experienced the plastic deformation 1n the direction opposite to the buckling mode.
H (ton )

H (ton )
80

60

o \ -

Analysis
(E’ :l /500)

----- Test

Analysis 40+
(e =1 /500 )

____ . - -

Figure 5 (a) Frame K

83




T by 4 g
g ole S
i 3 't -="_~. L‘,;‘i:_..l_
£ la ", | 5 3

i o e R
¥ T S ol P T Bad
TR,
’ Pk
E = : = 1
b TSR R N e

3 kL : _L- i..'- -
1 = : ALt e
- o 1 - =:r*ﬁt’%ﬁ%ﬁ-

| oint - ; l
at the P _ . Analysis Il \
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the initial buckling but also the

. displacement relationship.

CONCLUSION

' 5 1zed
Conclusions obtained are summarize

. ’lfﬁnotz'ered set of perturbation equation of Con'}bined. nonlinear constitutive equation
" e hardening general }"e]d hinge model

ined for the strain | ; . |
B A lysis gives good estimation for the load - displacement relat

9 The present method of ana es ‘_ :
ship of the braced skeleton when it is accompanied by buckl_mg. |
lysed by general yield hinge method has shar;

3. The load - displacement relationship ana
peaks around the buckling points because the model cannot express the gradual expansior

of the plastic region.
ffects the initial buckling load level and car

4. The initial deflection of the member e
effect the load - displacement relationship afterwards.
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